Fos expression in pontomedullary catecholaminergic cells following rapid eye movement sleep-like episodes elicited by pontine carbachol in urethane-anesthetized rats.

نویسندگان

  • I Rukhadze
  • V B Fenik
  • J L Branconi
  • L Kubin
چکیده

Pontine noradrenergic neurons of the locus coeruleus (LC) and sub-coeruleus (SubC) region cease firing during rapid eye movement sleep (REMS). This plays a permissive role in the generation of REMS and may contribute to state-dependent modulation of transmission in the CNS. Whether all pontomedullary catecholaminergic neurons, including those in the A1/C1, A2/C2 and A7 groups, have REMS-related suppression of activity has not been tested. We used Fos protein expression as an indirect marker of the level of neuronal activity and linear regression analysis to determine whether pontomedullary cells identified by tyrosine hydroxylase (TH) immunohistochemistry have reduced Fos expression following REMS-like state induced by pontine microinjections of a cholinergic agonist, carbachol in urethane-anesthetized rats. The percentage of Fos-positive TH cells was negatively correlated with the cumulative duration of REMS-like episodes induced during 140 min prior to brain harvesting in the A7 and rostral A5 groups bilaterally (P < 0.01 for both), and in SubC neurons on the side opposite to carbachol injection (P < 0.05). Dorsal medullary A2/C2 neurons did not exhibit such correlation, but their Fos expression (and that in A7, rostral A5 and SubC neurons) was positively correlated with the duration of the interval between the last REMS-like episode and the time of perfusion (P < 0.05). In contrast, neither of these correlations was significant for A1 /C1 or caudal A5 neurons. These findings suggest that, similar to the prototypic LC neurons, neurons of the A7, rostral A5 and A2/C2 groups have reduced or abolished activity during REMS, whereas A1 /IC1 and caudal A5 neurons do not have this feature. The reduced activity of A2/C2, A5 and A7 neurons during REMS, and the associated decrements in norepinephrine release, may cause state-dependent modulation of.transmission in brain somato- and viscerosensory, somatomotor, and cardiorespiratory pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of A5 Neurons Facilitates the Occurrence of REM Sleep-Like Episodes in Urethane-Anesthetized Rats: A New Role for Noradrenergic A5 Neurons?

When rapid eye movement (REM) sleep occurs, noradrenergic cells become silent, with the abolition of activity in locus coeruleus (LC) neurons seen as a key event permissive for the occurrence of REM sleep. However, it is not known whether silencing of other than LC noradrenergic neurons contributes to the generation of REM sleep. In urethane-anesthetized rats, stereotyped REM sleep-like episode...

متن کامل

Evidence That Adrenergic Ventrolateral Medullary Cells Are Activated whereas Precerebellar Lateral Reticular Nucleus Neurons Are Suppressed during REM Sleep

Rapid eye movement sleep (REMS) is generated in the brainstem by a distributed network of neurochemically distinct neurons. In the pons, the main subtypes are cholinergic and glutamatergic REMS-on cells and aminergic REMS-off cells. Pontine REMS-on cells send axons to the ventrolateral medulla (VLM), but little is known about REMS-related activity of VLM cells. In urethane-anesthetized rats, do...

متن کامل

THE RAPID EYE MOVEMENT (REM) STAGE OF SLEEP IS CHARACTERIZED BY CORTICAL AND HIPPOCAMPAL ACTIVATION, RAPID EYE MOVEMENTS, SILENCING OF brainstem aminergic neurons, and postural atonia.1 Cholinergic activation

THE RAPID EYE MOVEMENT (REM) STAGE OF SLEEP IS CHARACTERIZED BY CORTICAL AND HIPPOCAMPAL ACTIVATION, RAPID EYE MOVEMENTS, SILENCING OF brainstem aminergic neurons, and postural atonia.1 Cholinergic activation plays an important role in the generation of REM sleep, since pontine microinjections of cholinergic agonists into the pontine reticular formation trigger or enhance a rapid eye movements ...

متن کامل

Disinhibition of perifornical hypothalamic neurones activates noradrenergic neurones and blocks pontine carbachol-induced REM sleep-like episodes in rats.

Studies in behaving animals suggest that neurones located in the perifornical (PF) region of the posterior hypothalamus promote wakefulness and suppress sleep. Among such cells are those that synthesize the excitatory peptides, orexins (ORX). Lack of ORX, or their receptors, is associated with narcolepsy/cataplexy, a disorder characterized by an increased pressure for rapid eye movement (REM) s...

متن کامل

A5 cells are silenced when REM sleep-like signs are elicited by pontine carbachol.

The A5 noradrenergic neurons are considered important for cardiorespiratory regulation. We hypothesized that A5 cells are silenced during rapid eye movement (REM) sleep, thereby contributing to cardiorespiratory changes and suppression of hypoglossal (XII) motoneuronal activity. We used an anesthetized, paralyzed, and artificially ventilated rat in which pontine microinjections of carbachol tri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 152 1  شماره 

صفحات  -

تاریخ انتشار 2008